
20 CROSSTALK The Journal of Defense Software Engineering September 1998

Everyone agrees on what pro-
cess improvement is, right? It is
the most discussed topic in soft-

ware engineering. It has been around
for such a long time; there is no need to
define anything before launching into a
familiar discussion, right? Wrong.

Process Improvement Defined
To paraphrase W. Edward Deming,
author of Out of the Crisis, process im-
provement is not something you talk
about; it is something you do. For pro-
cess improvement in software engineer-
ing, when all is said and done, a lot
more is said than done. What is worse,
far too much of what is done is done
wrong—the process is not better, and
process improvement is besmirched. Let
us look at process improvement and see
if there is a way to effectively and con-
sistently improve software engineering
processes.

Two things need to be understood:
process and improvement. It may sound
silly, but the number of different defini-
tions and their imprecision lead to a
great deal of confusion and misunder-
standing about process improvement.

A prerequisite for process improve-
ment is to have a comprehensive pro-
cess definition. The operating defini-
tion of process is “the definition of the
way in which something is intended to
be done.” Any process has an accom-
plishment objective. A process must
describe the steps to achieve its objec-
tive and the means to do the steps.
Since this definition could apply to
many things, for software engineering,
our process is assumed to have a formal
definition so that it can be repeated.

Important Terms and Concepts
A variety of concepts must be under-
stood before you can make the distinc-
tions needed to initiate true process
improvement.

Processes vs. Projects
Distinguish processes from projects: A
process is the intended way to complete
a project, whereas a project is the appli-
cation of resources to that process.
Because projects are tangible, the only
way you can measure a process is to
measure projects and use the informa-
tion to make inferences about the pro-
cess. When measuring, it is important
to know what can affect processes and
projects:
• Processes are affected by common

causes of variation, e.g., teams, tools,
environment. When you work on
common causes, it is called “process
improvement.” Common causes
should be addressed by your pro-
cess.

• Projects can be affected by either
common or special causes of varia-
tion, e.g., system failures, attrition,
or improper schedule or budget.
Working on special causes is (or
should be) problem identification
and correction, commonly called
“fire fighting.” Special causes cannot
necessarily be prevented or ad-
dressed through process changes.
You must always distinguish which

type of cause is at work, because if you
treat a common cause with special cause
techniques and tools (or vice versa), you
are “meddling” rather than solving
problems. Meddling invariably causes
more “fires,” and fire fighting does not
improve processes.

Efficiency, Cycle Time, Quality
Three characteristics describe any
process:
• Efficiency (E) – the relationship

between resource use and accom-
plished results.

• Cycle Time (T) – the “design
speed” of the process, i.e., the speed
of a particular development process
relative to other processes (assuming
certain factors are equal).

• Quality (Q) – the quality of the
process.

You may laugh when someone says
“good, fast, cheap—pick two” but this
is more insight than humor. For any
process,

 function f(E,T,Q) = constant K.
Therefore, if you want better and faster
and cheaper, you will need a different
process.

Sequence and Means
Sequence and means are the two ele-
ments of a process. Sequence is simply
the order in which things are accom-
plished. There are two types of se-
quences:
• Required – an order that must be

followed, as demonstrated through
precedence, i.e., putting on a second
coat of paint requires that the first
coat already be applied and cured.
In software development, prece-
dence has long shown it is best to
start coding after the requirements
are gathered.

• Discretionary – the order in which
it is decided that something will be
done. Past precedence and the avail-
ability of related means influence
the sequence in which discretionary
processes are executed.

Real Process Improvement
Steve Neuendorf

Independent Management Consultant

Process improvement: The name belies its nature. Many people see it as the way to build products better,
faster, and cheaper. In truth, there are many ways to be better, faster, and cheaper at whatever you are
doing, and process improvement is only one of them. However, process improvement is the most reliable
because first it works on people and only then does it work on the process. First you understand how good,
fast, and cheap a process is and why it is that way. You also develop an understanding of why alterations
of a process or adoption, as well as altogether different processes may be better, faster, or cheaper. With this
understanding, you can then implement the changes that will result in improved performance.



CROSSTALK The Journal of Defense Software Engineering 21September 1998

After sequence comes the means by
which the steps or tasks will be carried
out. It is understood that a project is
“the application of resources to a pro-
cess to produce a result.” People usually
think of resources as labor, time, and
money, but for understanding the pro-
cess you must consider other resources
such as tools, techniques, technology,
and factors particular to “resources”
such as the skill and experience of the
team members. Therefore, the defini-
tion of means includes all aspects you
should consider so that you can under-
stand and improve processes. It is help-
ful to consider the means separately in
categories such as management, tech-
nology, teams (or people), tools, tech-
niques, and environment.

Capability and Capacity
For effective process improvement, an
organization must consider all of its
processes collectively. As defined so far,
a process is a sequence and a set of
means. By this definition, each organi-
zation would have a virtually infinite
number of processes (possible combina-
tions of E, T, and Q). Therefore, the
additional dimensions of capability and
capacity must be understood. Each
possible combination of E, Q, and T
defines a capability. The current ability
of the organization to execute a capabil-
ity defines capacity.

This is not as complicated as it may
sound. For example, one of the means
defined as “Red Team” is comprised of
members with certain experience and
knowledge. Red Team projects are done
faster, better, and cheaper than “Blue” or
“Green” Team projects. Red Team per-
formance levels are a “capability.” Be-
cause the organization may have only a
limited number of employees qualified
to form Red Teams, there is a limited
capacity associated with the Red Team
capability.

Innovation and Continuous
Improvement
There are two categories of improve-
ment: continuous improvement and
innovation. Continuous improvement
of processes is the systematic upgrading
of lower capability means to give higher

capacity at a higher capability. To use
the prior example, continuous improve-
ment of team capability would be to
provide training to Blue and Green
Team members so that more Red Teams
can be formed.

Innovation is the introduction of
new capability. Again, using the prior
example, innovation would be training
everyone in a new technique. Everyone,
even the Red Team, would have a greater
capability to execute the new technique.
It is important to note that innovation
usually introduces learning curve dy-
namics and a risk of failure to a greater
extent than continuous improvement.

Following is another distinction
between strategy and process improve-
ment. Again, using our example, if you
were to merely adopt a strategy to re-
place Green and Blue Team members
with Red Team-qualified candidates,
better values of performance (E, Q, and
T) would be expected. However, Red
Team-caliber candidates are expensive
and much harder to find. Green and
Blue Team members could be trained
(their processes improved); however,
process improvement requires under-
standing the process—you need to
know what will improve a process and
how much improvement is needed. For
example, the cost of making your Blue
and Green Team members perform like
the Red Teams must first be deter-
mined, then the benefit of improving
team performance can be discovered.

As in anything complex, what is
“obvious” is not always true, and what
is true is not always obvious. Only by
improving your understanding of the
process can you manage the risk of
making changes that do not result in
the desired improvement.

Tools for Process Improvement
For all of the above categorization,
there are still two categories of process
improvement that need to be consid-
ered when you apply the available pro-
cess improvement tools. There are re-
petitive processes, such as most
manufacturing, and there are
nonrepetitive processes, such as soft-
ware engineering.

Repetitive Processes
Virtually all of the common process
and statistical process control (SPC)
literature focuses on repetitive process
principles and examples. Characteristics
of these processes are a mostly fixed
precedence, sequence, and means. Gen-
erally, the process flow-chart tool is
used to understand and improve these
processes, with care to use the decision
element of the flow-chart tool to divide
flow into segments that are distributed
in such a manner that SPC tools can be
used to analyze data (see Figure 1).

Nonrepetitive Processes
The goal in process improvement for
software engineering is to improve non-
repetitive processes. Your understanding
of these processes comes from analysis
of the effects of variation in the means
of production on performance. For
nonrepetitive processes, attempts to
understand and improve processes by
using repetitive process tools and tech-
niques will yield the same results as
trying to teach a pig to sing—you get
no singing, and it upsets the pig.

The key to understanding nonre-
petitive processes is knowing that while
the means may be similar from project
to project, the steps and sequence can
never be exactly the same. That is, even

Repetitive Process Flow Charting

Process Flow Symbol Charting
Symbol Properties
Arrow Flow volume

Flow timing

Input/Output Naming
Responsibility notation

Storage/Queue Volume
Capacity
Timing

Operation Resource use
Timing
Capacity

Decision Criteria
Flow percentage

Figure 1. Flow charting without documenting
the properties makes a nice picture but a poor tool
for process understanding and improvement.

Real Process Improvement



22 CROSSTALK The Journal of Defense Software Engineering September 1998

if you start a new project with the last
project’s teams (people and skills), man-
agement (people, styles, and leadership),
and tools and techniques in the same
environment, you are nevertheless deal-
ing with a different project. However,
there are myriad aspects of the means
(management, teams, tools, techniques,
environment, etc.) that can be measured
in a way so the variation in these mea-
sures can be related to variations in per-
formance (E, T, and Q) for any project.

However, at this point you do not
necessarily yet understand the nature of
your nonrepetitive processes. Notice in
the process flow-chart tool description
from Figure 1 that the volume property
of the arrows, along with the “normaliza-
tion” use of decisions, allows an analyst
to “normalize out” variation due to
throughput and size. For nonrepetitive
processes, project cost, defects, and dura-
tion will vary due to differences in the
means of completing the project and the
(deliberately) heretofore not mentioned
size factor—changing the size of a
project can change everything.

I have not mentioned the size mea-
surement because it seems to work like
a light switch—flip the switch and
about half the people turn on and the
rest turn off. The goal of a size measure
is to remove variation due to size from
the analysis without introducing an-

ample, imagine project management is
the means being evaluated. The low
end of the scale would be no project
management or maybe a project lead
and no formal tracking. The top of the
scale would be a full-time project man-
ager who reports to the project manage-
ment office and uses a full set of project
management tools.

With all means identified and a
scale created for each of the means, the
values of the means for any given
project constitute a process. Improve-
ment of the process is the improvement
of the means. Figure 2 shows how a
process is managed to obtain a perfor-
mance result. For the organization
measured, the scale in each means, e.g.,
management, represents the range of
influence of the measured capability on
performance. For any project, the ac-
tual value of the mean (the triangle
symbol) predicts the contribution of
that aspect to the overall performance
of the project. The process model shows
the collective effect of the measured
means values on project performance
and gives the overall predicted project
performance. The goal of performance
measurement then becomes measuring
actual performance against predicted
performance to detect problems. Pro-
cess improvement is working on the
means, both for capability (higher levels
on the scale) and for capacity (how
much is available for use).

If you know what to do, calibrating
the process improvement model can be
straightforward, i.e., for any given set of
means, values for E, Q, and T (exclu-
sive of special causes) can be predicted.
It follows that if the model is calibrated,
the effect of changes in the means (ben-
efits) can also be quantified. Finally,
understanding the means makes im-
provement actions and investments
evident and makes improvement cost
(time and money) easily determined.
You now have the action, cost, and
benefit of process improvement objec-
tively in front of you. Now more can be
done than said.

It also is important to note that even
in a calibrated model, it is likely that
the variation in performance effect for

Figure 2. Managing a process to obtain a performance result.

other source of variation and without
removing a process-related source of
performance variation. If your size
measure does this (some straightfor-
ward statistical analysis will tell), you
are on the right track.

An Example
To illustrate how this translates into
reality, I use an example with which I
assume most readers are familiar: the
Software Engineering Institute (SEI)
Capability Maturity Model (CMM). In
a simplistic view, the CMM measures
capability maturity on a scale of Level 1
to Level 5 with Level 5 being most
mature. Several practitioners and ana-
lysts have also developed relationships
between the CMM maturity level and
performance in each dimension of
process measurement (E, T, and Q),
notably, the higher the maturity level,
the better the performance. From the
analyses I have seen, the differences in
each E, T, and Q are substantial, and I
assume they are statistically significant.

The nonrepetitive process improve-
ment model is analogous to this view of
the SEI CMM. That is, for each of the
means (management, teams, tools,
techniques, environment, etc.), a scale
of possible conditions is developed, and
criteria to evaluate that means accord-
ing to that scale are prepared. For ex-

Project Management is (1) identifying the process used (and predicted performance) and (2) assuring
that the actual performance equals predicted performance.
Process Improvement is (1) improving your capacity at each higher level of capability (more projects at
the higher expectation levels) and (2) increasing your capability in each of the process areas (dotted lines).

Software Process Improvement



CROSSTALK The Journal of Defense Software Engineering 23September 1998

the lower levels of a means is much
greater than for higher levels. That
translates into the risk that the predic-
tion at low levels will be off. In analysis
theory, these are prediction anomalies
called outliers, which are ignored. In
process improvement, these must be
accommodated. There are some stellar
software producers at CMM Level 1;
therefore, at Level 1, the model is not
fully predictive. However, the over-
whelming odds are that Level 1 perfor-
mance will be worse than the perfor-
mance of organizations at higher levels.

The real key to process improve-
ment is hidden in the first phrase of a
sentence two paragraphs back: “If you
know what to do, ...” Process improve-
ment is not intuitive (“perfect practice
makes perfect”). At risk of confusing
my explanation of process improve-
ment, the process that most needs
implementing is the one you use for

process improvement. Once this pro-
cess is good, the result will be an im-
proved software engineering process. In
other words, for process improvement
to succeed, the skill level of the process
improvement project team must be
high, not the skill level in software
engineering groups.

Most organizations do not have the
requisite process improvement skills
among their management or staff. No
matter how motivated, facilitated, or
well led, a team without the right skills
is likely to fail to implement process
improvement. If you are in a typical
organization, process improvement has
failed at least once. If you blamed the
team, you were wrong—your expecta-
tions were unfounded. If you blamed
process improvement merely because it
is an art that is difficult to master, you
were wrong, too—process improvement
is alive and well and works great in the

right hands. If you brought together the
right resources in the right place at the
right time with the right management
and right leadership, you probably did
not read this far. Good Luck. u

About the Author
Steve Neuendorf is an
independent manage-
ment consultant. He has
over 25 years measure-
ment and process im-
provement experience,
with over 15 years in

software engineering process improve-
ment. He has a bachelor’s, a master’s, and
a doctorate from the University of Puget
Sound.

Voice: 425-557-8747
E-mail: steve@serv.net
Internet: www.serv.net/~steve

Real Process Improvement

The Air Force Communications Agency (AFCA) at Scott
Air Force Base, Ill. has transferred its responsibility for
conducting Capability Maturity Model (CMM)-Based
Appraisals for Internal Process Improvement (CBA/IPI)
for Air Force organizations to the Software Technology
Support Center (STSC) at Hill Air Force Base, Utah. The
CBA/IPI is a method licensed by the Software Engineer-
ing Institute to assess an organization’s capability to de-
velop and maintain software. STSC consultants have
experience in CMM-Based Appraisals that range from
maturity Levels 2-5.

Organizations that need CBA/IPI assessments should call
the STSC staff at 801-775-5555 ext. 3065 DSN 775-5555
ext. 3065 or E-mail spi@stsc1.hill.af.mil.

Passing the
CBA/IPI Torch

Need Assistance with
 Software Process

Improvement?
Call the SPI Hotline at 801-775-5555 ext. 3055 DSN 775-
775-5555 ext. 3055 or E-mail us at spi@stsc1.hill.af.mil.

We can answer questions about various software process
improvement (SPI) issues, including

• How to get started on SPI. • CMM key process areas.
• Available SPI training. • SPI best practices.
• Assessments. • SPI return on investment.

Software Technology Support Center (STSC) SPI veter-
ans are on call to answer questions and research your prob-
lems for up to one hour without charge. We can provide
you with policy, process, and procedure templates from our
STSC library. If you need in-depth assistance, we will refer
you to the appropriate experts using our database of pre-
qualified consultants from the STSC and external sources.

Several SEPG members responsible for leading OO-
ALC/TIS to its Level 5 status now work in the STSC. Call
the SPI Hotline for their consulting services.


